Menjelaskan Rumus Volume Tabung dengan singkat

Volume Tabung   =   Volume Prisma

=   Luas Alas x Tinggi

=   (pr2) x (t)

=   p r 2 t

Bidang Singgung Pada Bidang Tabung

Pada gambar di atas, A merupakan pusat lingkaran alas dari tabung. Dibuat garis singgung pada p pada alas tabung itu dengan D sebagai titik singgung. Dibuat garis pelukis DE, maka bidang yang melalui P dan DE disebut bidang singgung pada bidang tabung. Jika dalam bidang singgung pada bidang tabung itu kita lukis garis g yang tidak sejajar dengan garis pelukis, maka garis g itu akan memotong garis pelukis DE di sebuah titik P yang merupakan titik persekutuan dari garis g dan bidang tabung.

Dalam hal ini maka garis g dikatakan menyinggung bidang tabung di titik P. Garis g juga merupakan garis yang menyilang sumbu tabung pada jarak tetap, yaitu r.

Karena bidang singgung L melalui garis pelukis yang letaknya selalu sejajar dengan sumbu tabung s, maka akibatnya bahwa setiap bidang singgung pada bidang tabung letaknya pasti sejajar dengan sumbu tabung s.

Dari pernyataan di atas dapatlah disimpulkan bahwa:

  1. Semua garis yang menyilang sebuah garis s dengan jarak tetap (r) terletak pada sebuah bidang yang menyinggung bidang tabung dengan s sebagai sumbu dan r sebagai jari-jarinya.
  2. Setiap bidang yang sejajar dengan sebuah garis s dan mempunyai jarak tetap (r) terhadap s, menyinggung bidang tabung dengan s sebagai sumbu dan r sebagai jari-jarinya.