Menjelaskan Persamaan Logaritma dengan singkat

Persamaan logaritma adalah persamaan yang peubahnya terdapat dalam bilangan pokok atau numerusnya.

Contoh : (i) log (3x – 1) = log (x – 15) , (ii) (x-1)log 16 = 2, dll Macam-macam bentuk persamaan logaritma :

  1. alog f(x) = alog p f(x)log a = g(x)log a
  2. alog f(x) = alog g(x) f(x)log g(x) = f(x)log h(x)
  3. alog f(x) = blog f(x)  A.(a log x)2 + B(a log x) + C = 0
  4. f(x)log g(x) = p untuk A ¹ 0

Baca Juga Artikel yang Mungkin Berhubungan : 

Bentuk persamaan logaritma pada umumnya belum sederhana. Untuk menyeder- hanakan persamaan logaritma perlu memperhatikan sifat-sifat logaritma berikut :

Dalam menyelesaikan persamaan logaritma, bilangan pokok logaritma perlu disamakan dahulu. Nilai penyelesaian yang diperoleh perlu diuji dengan mensubstitusikan ke persamaan semula. Nilai penyelesaian yang menjadi anggota himpunan penyelesaian (HP) adalah yang mengakibatkan :

  1. numerus pada persamaan semula bernilai
  2. bilangan pokok logaritma pada persamaan semula bernilai positif dan tidak sama dengan 1 (satu).

Contoh soal

Tentukan himpunan penyelesaian dari 2log (2x+1) = 3 !

Jawab: