Menjelaskan Mekanisme Jalannya Udara Saat Bernapas dengan singkat

Paru-paru mamalia terletak dalam rongga dada.Paru-paru mamalia mempunyai tekstur yang mirip spons dan berbentuk seperti sarang lebah dengan epithelium lembap yang berfungsi sebagai pertukaran respirasi. Luas total permukaan epithelium (sekitar 100m2 pada manusia) sudah cukup untuk melakukan pertukaran gas untuk keseluruhan tubuh. Sebuah sistem saluran yang bercabang mengirimkan udara ke paru-paru.Udara masuk melalui lubang hidung kemudian disaring oleh rambut, dihangatkan, dilembapkan, dan dicek jika ada bebauan, sementara udara mengalir berbagai ruang di dalam rongga hidung.

Rongga hidung mengarah ke faring, semacam persimpangan dimana jalur untuk udara dan makanan saling silang. Ketika makanan ditelan, laring bergerak ke atas dan merebahkan epiglottis di atas glotis.Hal tersebut membuat makanan dapat masuk ke esophagus hingga lambung. Pada waktu lain, glotis berada dalam keadaan terbuka dan manusia dapat bernafas.

  • Proses terbentuknya suara

Dinding laring diperkuat dengan tulang rawan. Pada manusia dan mamalia lain, laring diadaptasikan sebagai kotak suara. Ketika ada udara dihembuskan udara tersebut akan melintasi pasang pita suara dalam laring, kemudian suara dihasilkan ketika otot sadar dalam kotak suara menjadi tegang dan meregangkan pita suara tersebut sehingga pita suara bergetar. Suara berada tinggi dihasilkan ketika pita suara sangat teregang dan bergetar cepat; suara bernada rendah berasal dari pita suara yang tidak terlalu tegang bergetar secara perlahan.

Dari laring, udara lewat ke dalam trakea atau batang tenggorokan.Cincin tulang rawan (sebenarnya berbentuk seperti huruf C) mempertahankan bentuk trakea.Trakea bercabang menjadi dua bronki (tunggal, bronkus) masing-masing menuju ke setiap paru-paru.Di dalam paru-paru bronkus bercabang secara berulang-ulang menjadi pipa yang semakin halus disebut sebagai bronkiolus.Keseluruhan system saluran udara tampak seperti pohon terbalik, dimana batang berperan sebagai trakea. Epithelium yang melapisi cabang utama pohon respirasi ditutupi oleh silia dan sebuah lapisan tipis mucus. Mucus akan menjerat debu, serbuk sari, dan partikel-partikel kontaminan lainnya. Silia yang berdenyut menggerakkan mucus ke arah atas menuju faring dimana mucus dapat ditelan ke dalam esophagus. Proses ini membantu membersihkan sistem respirasi.

Pada ujungnya, bronkiolus yang paling kecil berakhir dan membentuk sekumpulan kantung udara yang disebut alveoli (tunggal, alveolus).Epithelium tipis yang terdiri dari jutaan alveoli di dalam paru-paru berfungsi sebagai permukaan respirasi. Oksigen di udara yang dikirimkan ke alveoli melalui pohon respirasi akan larut dalam lapisan tipis yang lembap dan berdifusi melewati epithelium dan masuk ke dalam suatu jaringan kapiler yang mengelilingi masing-masing alveolus. Karbondioksida berdifusi dari kapiler, menembus epithelium alveolus dan masuk ke dalam ruangan udara.

  • Ventilasi paru-paru

            Vertebrata memventilasi paru-parunya dengan cara bernapas yaitu penghirupan (inhalasi) dan penghembusan (ekshalasi) udara secara bergantian. Ventilasi mempertahankan konsentrasi oksigen maksimum dan konsentrasi karbondioksida minimum di dalam alveoli.Mamalia memventilasi paru-parunya dengan pernapasan bertekanan negative, yang bekerja sepertid pompa penyedot udara dan bukan mendorong udara sehingga udara mengalir ke paru-paru.

Pernapasan dengan tekanan negative disebabkan oleh perubahan volume paru-paru dan bukan oleh perubahan volume rongga mulut. Kerja otot mengubah volume rongga dada dan sangkar tulang rusuk kemudian paru-paru menyusul berbuat hal yang sama. Hal ini dapat terjadi karena paru-paru terbungkus oleh kantung dinding ganda.Lapisan bagian dalam kantung itu menempel ke bagian luar menempel ke dinding rongga dada.Sebuah ruang tipis yang terisi penuh dengan cairan memisahkan kedua lapisan itu.Karena tegangan permukaan, maka kedua lapisan berperilaku seperti dua lempengan gelas yang ditempelkan bersama-sama oleh suatu lapisan tipis air. Lapisan-lapisan tersebut dapat menggelincir dengan mulus satu sama lain, tetapi lapisan-lapisan itu tidak dengan mudah dapat dipisahkan. Tegangan permukaan juga menyambung pergerakan paru-paru dengan tulang rusuk.

Volume paru-paru meningkat sebagai akibat kontraksi otot rusuk dan diafragma, lapisan otot rangka yang membentuk dinding dasar pada rongga dada. Kontraksi otot rusuk membesarlan sangkar tulang rusuk dengan cara menarik tulang rusuk ke atas kea rah atas dan tulang dada ke arah luar. Saat bersamaan, rongga dada membesar ketika diafragma berkontraksi dan turun seperti piston.

Semua perubahan tersebut meningkatkan volume paru-paru  dan sebagai akibatnya, tekanan udara di dalam alveoli menjadi lebih rendah dibandingkan tekanan di atmosfer. Karena udara mengalir dari tekanan tinggi ke tekanan rendah, maka udara  mengalir dari lubang hidung dan masuk ke pipa pernapasan sampai ke alveoli. Selama ekhalasi, otot tulang rusuk dan diafragma relaksasi, volume paru-paru berkurang, dan peningkatan tekanan udara di dalam alveoli memaksa udara naik ke pipa pernapasan dan keluar melalui lubang hidung.

  • Kapasitas volume paru-paru

Kontraksi otot tuselang rusuk dan diafragma bertanggung jawab atas peningkatan volume paru-paru selama pernapasan dangkal, ketika mamalia dalam kondisi istirahat. Selama aktivitas fisik berat, otot lain pada leher, punggung, dan dada selanjuny meningkatkan volume paru-paru dengan cara menaikkan peregangn sangkar tulang rusuk lebih jauh. Volume udara yang dihirup dan dikeluarkan pada pernapasan normal disebut sebagai udara tidal.Volume udara tidal pada manusia 500mL.

Volume udara maksimum yang dapat dihirup dan dikeluarkan selama pernapasan yang dipaksa disebut kapasitas vital. Volume kapasitas vital yaitu 3400mL dan 4800mL, secara berturut-turut untuk wanita dan laki-laki. Kapasitas vital bergantung pada berbagai factor, salah satunya kelenturan paru-paru.Paru-paru sebenarnya dapat menampung lebih banyak udara dibandingkan dengan kapasitas vitalnya, tetapi hal yang tidak mungkin adalah mengempiskan alveoli sepenuhnya, maka masih terdapat udara sisa.

  • Kontrol otomatis pernapasan

Pusat kontrol pernapasan berlokasi pada medulla oblongata dan pons. Pusat kontrol di pons membantu agar pusat medulla menentukan irama dasar pernapasan. Ketika manusia bernapas dalam-dalam, mekanisme umpan balik negative mencegah paru-paru supaya tidak membesar secara berlebihan. Sensor peregangan dalam jaringan paru-paru mengirimkan impuls saraf kembali ke medula yang akan menghambat pusat kontrol pernapasannya.

Pusat kontrol medulla oblongata membantu mempertahankan homeostatis dengan cara memonitor kadar CO2 dalam darah dan mengatur jumlah COyang dibuang oleh alveoli. Petunjuk utama mengenai konsentrasi CO2 datang dari munculnya perubahan pH darah dan cairan jaringan (cairan serebrospinal) yang menggenangi otak. Karbondioksida bereaksi dengan air untuk membentuk asam karbonat, yang akan menurunkan pH. Ketika pusat kontrol yang berada di medulla mendeteksi penurunan pH (peningkatan CO2) cairan serebrospinal atau darah akan meningkatkan kedalaman laju pernapasan dan kelebihan CO2 dibuang ke udara. Hal ini terjadi ketika olahraga.

Konsentrasi O2 dalam darah umumnya mempunyai sedikit pengaruh pada pusat kontrol pernapasan. Akan tetapi, ketika kadar O2 turun (misal pada tempat yang berketinggian tinggi) maka sensor O2 di aorta dan arteri carotid di leher akan mengirimkan sinyal peringatan pada pusat kontrol pernapasan dan pusat itu merespon dengan cara meningkatkan kedalaman dan laju pernapasan. Peningkatan kadar karbondioksida menunjukkan indikasi bahwa adanya penurunan oksien. Karena karbondioksida dihasilkan melalui proses yang sama dengan yang mengkonsumsi oksigen yaitu respirasi seluler.

Tetapi, pusat kontrol pernapasan dapat dikelabui dengan ventilasi yang berlebihan. Pernapasan yang dalam dan cepat dapat secara berlebihan mengeluarkan banyak CO2 dari darah sehingga pusat pernapasan sementara terhenti dalam mengirimkan impuls ke  otot tulang rusuk dan diafragma. Pernapsan terhenti sampai kadar CO2 meningkat cukup banyak untuk menghidupkan kembali pusat pernapasan.

Gas akan berdifusi dari daerah tekanan parsial yang lebih tinggi. Hal itulah yang bertanggung jawab atas perpindahan dan pergerakan gas-gas respirasi.Darah yang sampai paru-paru melalui arteri pulmoner mempunyai nilai Po2 yang lebih rendah dari Pco2 yang lebih tinggi dibandingkan dengan udara di dalam alveoli.Ketika darah memasuki kapiler di sekitar alveoli, karbondioksida berdifusi dari darah ke udara di dalam alveoli. Oksigen dalam udara akan larut dalam cairan yang melapisi epithelium dan berdifusi menembus permukaan dan masuk ke darah kapiler.

Ketika darah telah meninggalkan paru-paru dalam vena pulmoner, nilai Po2 telah naik dan Pco2 telah turun. Setelah kembali ke jantung, darah tersebut dipompa melalui sirkuit sistematik. Dalam kapiler jaringan, gradient tekanan parsial lebih menyukai terjadinya difusi oksigen keluar dari darah dan karbondioksida dalam darah. Hal ini terjadi karena respirasi seluler dengan cepat menghabiskan kandungan oksigen dalam cairan interstisial dan menambahkan karbondioksida ke cairan itu.

Setelah darah melepaskan oksigen dan memuat karbondioksida darah tersebut dikembalikan ke jantung melalui vena semantic. Darah tersebut kemudia dipompa ke paru-paru sekali lagi, tempat darah akan mempertukarkan gas dengan udara di alveoli.