Menjelaskan Contoh Cara perhitungan kuartil untuk data kelompok dengan singkat

            Misalkan dari 80 orang siswa MAN jurusan IPS diperoleh skor hasil EBTA dalam bidan studi tata buku sebagaimana disajikan pada tabel distribusi frekuensi beikut ini ( lihat kolom 1 dan 2). Jika kita ingin mencari Q1, Q2, dan Q3, maka proses perhitungannya adalah sebagai berikut:

        Titik Q1= 1/4N = ¼ X 80 = 20 ( terletak pada interval 35-39). DenganØ demikian dapat kita ketahui: 1= 34,50; fi = 7; fkb = 13, i= 5.

Q1 = 1 + ( n/4N-fkb)  Xi = 34,50 +(20-13)  X5

Fi                                       7

= 34,50 +5

= 39,50

Titik Q2= 2/4N = 2/4 X 80 = 40 ( terletak pada interval 45-49).Ø Dengan demikian dapat kita ketahui: 1= 44,50; fi = 17; fkb = 35, i= 5.

Q1 = 1 + ( n/4N-fkb)  Xi = 44,50 +(40-35)  X5

Fi                                       17

= 44,50 +1.47

= 45,97

Titik Q3= 3/4N = 3/4 X 80 = 60 ( terletak pada interval 55-59).Ø Dengan demikian dapat kita ketahui: 1= 54,50; fi = 7; fkb = 59, i= 5.

Q1 = 1 + ( n/4N-fkb)  Xi = 54,50 +(55-59)  X5

Fi                                       7

= 54,50 + 0,71

= 55,21

Tabel 3.12. distribusi frekuensi skor-skor hasil EBTA bidang studi tata buku dari 80 orang siswa man jurusan ips, berikut perhitungan Q1,Q2, dan Q3.

Nilai (x) F Fkb
70-74

65-69

60-64

55-59

50-54

45-49

40-44

35-39

30-34

25-29

20-24

3

5

6

7

7

17

15

7

6

5

2

80

77

72

66

59

52

35

20

13

7

2

Total 80= N

 

Diantara kegunaan kuartil adalah untuk mengetahui simetris (normal) atau a simetrisnya suatu kurva. Dalam hal ini patokan yang kita gunakan adalah sebagai berikut:

  • 1). Jika Q3-Q2 = Q2- Q1 maka kurvanya adalah kurva normal.
  • 2). Jika Q3-Q2 > Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kiri(juling positif).
  • 3). Jika Q3-Q2 < Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kanan(juling negatif).

Jika data disajikan dalam bentuk Data Tunggal Tak Berfrekuensi

Rumus: Qi = 1 x ((n + 1) : 4)  atau 2 x ((n + 1) : 4)   atau 3 x ((n + 1) : 4)

Contoh:

Tentukan kuartil dari data berikut: 71, 69, 70, 48, 79, 61, 69, 83, 57, 54, 90,

ð 48, 54, 57, 61, 69, 69, 70, 71, 79, 83, 90

Kuartil 1 = 57

Kuartil 2 = 79

Data Tunggal Berfrekuensi

Contoh 2 :

Tentukandari tabel berikut :

Tabel 1

Nilai f
4 1
5 2
6 4
7 3
8 2

Jawab : Tentukan terlebih dahulu frekuensi kumulatif sebagai berikut

Tabel 2

Nilai f ∑f
4 1 1
5 2 1+2=3
6 4 3+4=7
7 3 7+3=10
8 2 10+2=12

Jadi jumlah frekuensi (atau jumlah data) ada n=12,

Q2 ditentukan dahulu karena menentukan yang tengah-tengah paling mudah, dan tengah-tengah dari 12 data terletak antara data ke-6 dan ke-7 seperti nampak pada visualisasi berikut :

Dengan melihat tabel 2, kita tahu bahwa data ke-6 adalah 6 dan data ke-7 juga 6, sehingga Q2= (6+6)/2 = 6

Secara umum, mencari nilai Q1, Q2, dan Q3 adalah dengan cara memandang jumlah data secara kontinu atau dipandang seperti sebuah garis lurus, misalnya sebagai berikut untuk contoh diatas :

Data Berkelompok

Contoh 2 :

Interval f ∑f
5 – 8 2 2
9 – 12 4 6
13 – 16 5 11
17 – 20 3 14

Dari tabel di atas, kita peroleh :

Banyak interval ada 4, yaitu 5 – 8, 9 – 12, 13 – 16, 17 – 20 ;

Panjang masing-masing kelas (interval), c = (8 – 5) + 1 = 4 ;

Banyak data, n=∑f=14 ;

Tepi bawah masing-masing interval didefinisikan dengan batas bawah dikurangi 0,5, dan tepi atas didefinisikan dengan batas atas ditambah 0,5. Tepi bawah masing-masing interval adalah : 4,5 ; 8,5 ; 12,5 ; 16,5 . Tepi atas masing-masing interval adalah : 8,5 ; 12,5 ; 16,5 ; 20,5.

Karena median (Q2) terletak di tengah-tengah, maka merupakan data ke-n/2=data ke-14/2=7. Dengan melihat tabel, data ke-7 terletak pada interval ketiga, yang tepi bawahnya, B=12,5.

Kuartil kedua (Q2) dinyatakan dengan formulasi :

dengan fk adalah frekuensi kumulatif sebelum kelas yang memuat Q2 (dalam contoh ini kelas median adalah kelas ketiga), jadi fk = 6 ;dan f adalah frekuensi kelas median, yaitu f = 5.Sehingga dapat kita hitung

Contoh lain kuartil :

Misal, untuk menentukan kuartil dari kumpulan data berikut.

  1. Data ganjil:

13      8       11      25      18      1 9. Tentukan K1-nya

Jawab:

Urutan datanya:

1        8       9        11      13      18           25

Letak kuartil (Q1 =  ada pada data yang kedua atau Q1 = 8

  1. Data genap

8        12     5        3        7        2        3    9.

Urutan data:

2        3       3        5        7        8        9    12

Q1=  misal menentukan nilai Q2 maka: Letak Q2 =  (terletak pada data yang keempat koma lima). Setelah kita dapatkan letak dari Q2, selanjutnya menentukan nilai K2 sebagai berikut:

Nilai Q2 = data keempat +  (data kelima – data keempat)

Q2 = 5 +  (7-5) = 7

Contoh 2:

Diketahui data sebagai berikut : 7, 6, 4, 5, 6, 5, 7, 6, 8, 4, 7, 8.

Tentukan Q1, Q2, dan Q3 !

Jawab:

Setelah diurutkan : 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8  dan n = 12